
Poster Print Size:
This poster template is 36” high by
48” wide. It can be used to print any
poster with a 3:4 aspect ratio.

Placeholders:
The various elements included in
this poster are ones we often see in
medical, research, and scientific
posters. Feel free to edit, move,
add, and delete items, or change the
layout to suit your needs. Always
check with your conference
organizer for specific requirements.

Image Quality:
You can place digital photos or logo
art in your poster file by selecting
the Insert, Picture command, or by
using standard copy & paste. For
best results, all graphic elements
should be at least 150-200 pixels
per inch in their final printed size.
For instance, a 1600 x 1200 pixel
photo will usually look fine up to
8“-10” wide on your printed poster.

To preview the print quality of
images, select a magnification of
100% when previewing your poster.
This will give you a good idea of
what it will look like in print. If you
are laying out a large poster and
using half-scale dimensions, be sure
to preview your graphics at 200% to
see them at their final printed size.

Please note that graphics from
websites (such as the logo on your
hospital's or university's home page)
will only be 72dpi and not suitable
for printing.

[This sidebar area does not print.]

Change Color Theme:
This template is designed to use the
built-in color themes in the newer
versions of PowerPoint.

To change the color theme, select
the Design tab, then select the
Colors drop-down list.

The default color theme for this
template is “Office”, so you can
always return to that after trying
some of the alternatives.

Printing Your Poster:
Once your poster file is ready, visit
www.genigraphics.com to order a
high-quality, affordable poster print.
Every order receives a free design
review and we can deliver as fast as
next business day within the US and
Canada.

Genigraphics® has been producing
output from PowerPoint® longer
than anyone in the industry; dating
back to when we helped Microsoft®
design the PowerPoint® software.

US and Canada: 1-800-790-4001
Email: info@genigraphics.com

[This sidebar area does not print.]

Contact References

Vidush Singhal; Milind Kulkarni
Purdue University

AoS to SoA Transformation of Recursive Tree-like ADTs

Algebraic data types are a language feature available in many functional programming
languages like Haskell. These make it easier for programmers to write complex data types.
However, the performance of such programs depends on various factors of which we are
interested mainly in data-layout. Gibbon[1] is a compiler that supports a small language of
tree traversals written in a subset of Haskell. It transforms programs that perform traversals
on tree-like ADTs to corresponding traversals over the serialized representation of the ADT.
This enhances spatial locality resulting in enhanced runtime performance. We take this data
representation a step further by allowing such ADTs to be represented as a struct of arrays
(SoA) serialization format. The structure of arrays layout can allow us to do performance
crucial optimizations such as vectorization over irregular, tree like recursive data types and
transform recursive traversals over them to iterative loops. We build our tool on top of the
Gibbon compiler and for a subset of programs, the SoA transformation performs better due
to enhanced locality. Preliminary results show that for certain reduction-like programs we
see ~2x speedup compared to baseline Gibbon.

Abstract

Introduction
Gibbon compiler
● A tree-traversal accelerator that serializes algebraic data types (ADTs).
● Gibbon uses regions — chunk-allocated buffers — to store serialized algebraic data types.

● Serialization is guided by LOCAL[2], a formal language that describes datatype layouts

using statically computed constraints.

● Gibbon automatically rewrites traversals over ADTs into traversals over a byte array

representation.

Hardware Benefits

● Modern hardware prefetchers are optimized for array-based access patterns.

● Traversals exhibit enhanced spatial locality and better cache performance.

Tree Representation
● The figure shows a Haskell Tree ADT and its preorder serialized layout.
● The arrows indicate order in which nodes are accessed during a preorder traversal.
Serialized Format
● Each tag (e.g., N, L) occupies 1 byte.
● Each integer value in the tree occupies 4 bytes.
● The serialized representation is laid out contiguously in memory.
Traditional Pointer-Based Representation
● Each tree node is allocated by malloc, storing pointers to left and right children.
● Tree is an irregular pointer mesh, with values accessed via pointer dereferencing.
Performance Issues (Pointer Based)
● Traversing pointer-based trees causes pointer chasing[3], which is inefficient.
● Leads to unpredictable cache behavior and slowdowns due to poor spatial locality.

Vidush Singhal Milind Kulkarni
Purdue University Purdue University
Email: singhav@purdue.edu Email: milind@purdue.edu
Website: vidsinghal.github.io Website: https://engineering.purdue.edu/~milind/

1. Vollmer, M., Spall, S., Chamith, B., Sakka, L., Koparkar, C., Kulkarni, M., Tobin-Hochstadt, S., & Newton, R. R. (2017). Compiling tree transforms to operate on packed representations. In P. Müller (Ed.), 31st
European Conference on Object-Oriented Programming (ECOOP 2017) (Vol. 74, pp. 26:1–26:29). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2017.26

2. Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and Ryan R. Newton. 2019. LoCal: a language for programs operating on serialized data. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 48–62. https://doi.org/10.1145/3314221.3314631

3. Vidush Singhal, Chaitanya Koparkar, Joseph Zullo, Artem Pelenitsyn, Michael Vollmer, Mike Rainey, Ryan Newton, and Milind Kulkarni. Optimizing Layout of Recursive Datatypes with Marmoset: Or, Algorithms
+ Data Layouts = Efficient Programs. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 38:1-38:28,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ECOOP.2024.38

Structure-of-Arrays (SoA) Representation

● The figure shows an alternative layout where tags and
integer values are stored in separate regions.

● One region contains all tags (N, L), each 1 byte;
another contains all leaf integers, each 4 bytes.

● Unlike the single-region serialized format, this layout
uses two disjoint regions (non-overlapping memory).

● Because the ADT structure is statically known, the
traversal can compute the next node’s address
without following pointers.

● This enables more predictable access patterns and
prepares the data for vectorization-friendly layouts.

● Many architectures have prefetchers that optimize regular access
patterns over memory buffers.

AoS representation:
● Traverses one buffer, but accesses different elements with different

constant strides.
● Example: data constructor tags increment by 1 byte, integers/floats

require different strides.
● Accessing buffer with multiple offsets can hinder prefetching and

caching.
SoA representation:
● Each buffer contains homogeneous data, so access stride is constant.
● Prefetchers can predict access patterns more effectively because of

constant stride.
SoA also benefits vectorization:
● Map-like operations over trees/lists often update leaf integers/floats.
● Example: adding a constant c to leaf values.
● Traversals have no parent-child dependencies, enabling parallel

updates.
● All integers are in a single buffer, allowing 4/8-lane vectorized loops.
● Vector loads are efficient since values are contiguously packed.
AoS is bad for vectorization:
● Integers are interleaved with other data, leading to poor vectorization.

Benefits of an SoA Optimization

● We implemented the full transformation in the Gibbon compiler.
● We have the ability to represent the memory representation of any datatype as either

fully factored SoA (Each field of the data type gets its own buffer) or Linear which is
the standard AoS representation.

● The user can annotate each data type in the high level haskell as either fully factored or
Linear.

● For nested data types, for instance, a Tree containing a List, if the Tree is annotated as
being fully factored, the user can choose the List to be either fully factored or linear.

● The user can choose to mix SoA and AoS layouts in the code.
● The memory representation for a datatype is global at the moment.

Current Implementation Progress

● Serializing Algebraic data types offer performance benefits because
of enhanced spatial locality.

● Our compiler allows to convert to a structure of arrays (SoA) layout
which can be beneficial for various optimization benefits.

● SoA can benefit locality due to more predictable strided access.
● SoA can benefit vectorization by moving homogenous data in the

same region.
● Our compiler can allow the user to annotate the ADT with its

layout (AoS or SoA) allowing the user to mix AoS and SoA data
types in the same program.

● For a certain class of programs (reduction-like) preliminary
experiments show that SoA layouts can offer faster runtime than
their AoS counterparts.

Conclusions

● Optimize functions for tail call optimization.
● Use mutable cursors to update address in place to avoid copying

costs.
● Exploit vectorization potential in recursive functions.
● Use iterative loops to traverse data types instead of recursion.

Coming Up Next

mailto:singhav@purdue.edu
mailto:milind@purdue.edu
http://vidsinghal.github.io
https://engineering.purdue.edu/~milind/
https://doi.org/10.4230/LIPIcs.ECOOP.2024.38

