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AoS to SoA Transformation of Recursive Tree-like ADTs

Algebraic data types are a language feature available in many functional programming 
languages like Haskell. These make it easier for programmers to write complex data types. 
However, the performance of such programs depends on various factors of which we are 
interested mainly in data-layout. Gibbon[1] is a compiler that supports a small language of 
tree traversals written in a subset of Haskell. It transforms programs that perform traversals 
on tree-like ADTs to corresponding traversals over the serialized representation of the ADT. 
This enhances spatial locality resulting in enhanced runtime performance. We take this data 
representation a step further by allowing such ADTs to be represented as a struct of arrays 
(SoA) serialization format. The structure of arrays layout can allow us to do performance 
crucial optimizations such as vectorization over irregular, tree like recursive data types and 
transform recursive traversals over them to iterative loops. We build our tool on top of the 
Gibbon compiler and for a subset of programs, the SoA transformation performs better due 
to enhanced locality. Preliminary results show that for certain reduction-like programs we 
see ~2x speedup compared to baseline Gibbon.

Abstract

Introduction
Gibbon compiler
● A tree-traversal accelerator that serializes algebraic data types (ADTs).
● Gibbon uses regions — chunk-allocated buffers — to store serialized algebraic data types.

● Serialization is guided by LOCAL[2], a formal language that describes datatype layouts 

using statically computed constraints.

● Gibbon automatically rewrites traversals over ADTs into traversals over a byte array 

representation.

Hardware Benefits

● Modern hardware prefetchers are optimized for array-based access patterns.

● Traversals exhibit enhanced spatial locality and better cache performance.

Tree Representation
● The figure shows a Haskell Tree ADT and its preorder serialized layout.
● The arrows indicate order in which nodes are accessed during a preorder traversal.
Serialized Format
● Each tag (e.g., N, L) occupies 1 byte.
● Each integer value in the tree occupies 4 bytes.
● The serialized representation is laid out contiguously in memory.
Traditional Pointer-Based Representation
● Each tree node is allocated by malloc, storing pointers to left and right children.
● Tree is an irregular pointer mesh, with values accessed via pointer dereferencing.
Performance Issues (Pointer Based)
● Traversing pointer-based trees causes pointer chasing[3], which is inefficient.
● Leads to unpredictable cache behavior and slowdowns due to poor spatial locality.
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Structure-of-Arrays (SoA) Representation

● The figure shows an alternative layout where tags and 
integer values are stored in separate regions.

● One region contains all tags (N, L), each 1 byte; 
another contains all leaf integers, each 4 bytes.

● Unlike the single-region serialized format, this layout 
uses two disjoint regions (non-overlapping memory).

● Because the ADT structure is statically known, the 
traversal can compute the next node’s address 
without following pointers.

● This enables more predictable access patterns and 
prepares the data for vectorization-friendly layouts.

● Many architectures have prefetchers that optimize regular access 
patterns over memory buffers.

AoS representation:
● Traverses one buffer, but accesses different elements with different 

constant strides.
● Example: data constructor tags increment by 1 byte, integers/floats 

require different strides.
● Accessing buffer with multiple offsets can hinder prefetching and 

caching.
SoA representation:
● Each buffer contains homogeneous data, so access stride is constant.
● Prefetchers can predict access patterns more effectively because of 

constant stride.
SoA also benefits vectorization:
● Map-like operations over trees/lists often update leaf integers/floats.
● Example: adding a constant c to leaf values.
● Traversals have no parent-child dependencies, enabling parallel 

updates.
● All integers are in a single buffer, allowing 4/8-lane vectorized loops.
● Vector loads are efficient since values are contiguously packed.
AoS is bad for vectorization:
● Integers are interleaved with other data, leading to poor vectorization.

Benefits of an SoA Optimization

● We implemented the full transformation in the Gibbon compiler. 
● We have the ability to represent the memory representation of any datatype as either 

fully factored SoA (Each field of the data type gets its own buffer)  or Linear which is 
the standard AoS representation.

● The user can annotate each data type in the high level haskell as either fully factored or 
Linear.

● For nested data types, for instance, a Tree containing a List, if the Tree is annotated as 
being fully factored, the user can choose the List to be either fully factored or linear.

● The user can choose to mix SoA and AoS layouts in the code.
● The memory representation for a datatype is global at the moment.

Current Implementation Progress

● Serializing Algebraic data types offer performance benefits because 
of enhanced spatial locality.

● Our compiler allows to convert to a structure of arrays (SoA) layout 
which can be beneficial for various optimization benefits.

● SoA can benefit locality due to more predictable strided access.
● SoA can benefit vectorization by moving homogenous data in the 

same region.
● Our compiler can allow the user to annotate the ADT with its 

layout (AoS or SoA) allowing the user to mix AoS and SoA data 
types in the same program.

● For a certain class of programs (reduction-like) preliminary 
experiments show that SoA layouts can offer faster runtime than 
their AoS counterparts.

Conclusions

● Optimize functions for tail call optimization.
● Use mutable cursors to update address in place to avoid copying 

costs. 
● Exploit vectorization potential in recursive functions.
● Use iterative loops to traverse data types instead of recursion.
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