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Algebraic data types are a language feature available in many functional programming / \ ® Many architectures have prefetchers that optimize regular access
languages like Haskell. These make it easier for programmers to write complex data types. AR AR e Ta Yo Yamn Vamn Ve Vamme patterns over memory buffers.
However, the performance of such programs depends on various factors of which we are ' N ) ( N | e -~ | AoSrepresentation:
interested mainly in data-layout. Gibbon[1] is a compiler that supports a small language of - - N NI L |10 N L]|12 N | NI L |10 NIL]|1 ‘ e Traverses one buffer, but accesses different elements with different
tree traversals written in a subset of Haskell. It transforms programs that perform traversals l \ | S s | T — constant strides.
on tree-like ADTs to corresponding traversals over the serialized representation of the ADT. % 5 ® Example: data constructor tags increment by 1 byte, integers/floats
This enhances spatial locality resulting in enhanced runtime performance. We take thisdata | | 10 | 12 require different strides.
representation a step further by allowing such ADTs to be represented as a struct of arrays = : ® Accessing buffer with multiple offsets can hinder prefetching and
(SoA) serialization format. The structure of arrays layout can allow us to do performance caching.
crucial optimizations such as vectorization over irregular, tree like recursive data types and Tree Representation SoA representation:
transform recursive traversals over them to iterative loops. We build our tool on top of the e The figure shows a Haskell Tree ADT and its preorder serialized layout. e FEach buffer contains homogeneous data, so access stride is constant.
Gibbon compiler and for a subset of programs, the SoA transformation performs better due e The arrows indicate order in which nodes are accessed during a preorder traversal. e Prefetchers can predict access patterns more effectively because of
to enhanced locality. Preliminary results show that for certain reduction-like programs we Serialized Format constant stride.
see ~2x speedup compared to baseline Gibbon. e Eachtag (e.g., N, L) occupies 1 byte. SoA also benefits vectorization:
e Each integer value in the tree occupies 4 bytes. e Map-like operations over trees/lists often update leaf integers/floats.
. e The serialized representation is laid out contiguously in memory. ® Example: adding a constant c to leaf values.
Int rod uction Traditional Pointer-Based Representation e Traversals have no parent-child dependencies, enabling parallel
_ _ e Each tree node is allocated by malloc, storing pointers to left and right children. updates.
Gibbon compiler L | e Tree is an irregular pointer mesh, with values accessed via pointer dereferencing. o Allintegers are in a single buffer, allowing 4/8-lane vectorized loops.
® A tree-traversal accelerator that serializes algebraic data types (ADTs). Performance Issues (Pointer Based) e \ector loads are efficient since values are contiguously packed.
® Gibbon uses regions — chunk-allocated buffers — to store serialized algebraic data types. e Traversing pointer-based trees causes pointer chasing[3], which is inefficient. AoS is bad for vectorization:
e Serialization is guided by LOCAL[2], a formal language that describes datatype layouts e Leads to unpredictable cache behavior and slowdowns due to poor spatial locality. e Integers are interleaved with other data, leading to poor vectorization.
using statically computed constraints.

® Gibbon automatically rewrites traversals over ADTs into traversals over a byte array

, Structure-of-Arrays (SoA) Representation °
representation. Comlng U p Next
Hardware Benefits " Yo Vo Yo, Toggpe e The figure shows an alternative layout where tags and

e Modern hardware prefetchers are optimized for array-based access patterns. | '? Integer values are stored in separate regions. ® Optimize functions for tail call optimization.
e Traversals exhibit enhanced spatial locality and better cache performance. N N N L L ® One region contains all tags (N, L), each 1 byte; e Use mutable cursors to update address in place to avoid copying
another contains all leaf integers, each 4 bytes.

costs.
e Exploit vectorization potential in recursive functions.
e Use iterative loops to traverse data types instead of recursion.

_____________________________ e Unlike the single-region serialized format, this layout
uses two disjoint regions (non-overlapping memory).
User ® Because the ADT structure is statically known, the
Annotations on —» Al . traversal can compute the next node’s address
[ gebraic ] [ Traversal ]

ADT | ithout following pointers
\ J . | Data Type over ADT | withou gp : o
! 10 | 12 ® This enables more predictable access patterns and CO“CIUS'O“S
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"""""""""""""" | | repares the data for vectorization-friendly layouts. . . .
/ \ Prep yiay Serializing Algebraic data types offer performance benefits because
h . of enhanced spatial locality.
Array of Strugts Structure OfSArrayS Cu rrent | m plementat|0n PrOg Fess Our compiler allows to convert to a structure of arrays (SoA) layout
Layout (Ao Layout (SOA : .. : C . :
yortiaos) jlouti(=0r) We imof 1 the full f on i the Gibb ! which can be beneficial for various optimization benefits.
| ® e Implemented the tull transtormation In the Gibbon compiler. . . . .
\ / P - mp _ SoA can benefit locality due to more predictable strided access.
1 e \We have the ability to represent the memory representation of any datatype as either . ... . .
- DN 4 \ 4 ™ . . . L ® SOA can benefit vectorization by moving homogenous data in the
Low Level IR with fully factored SoA (Each field of the data type gets its own buffer) or Linear which is came region
Extended LOCAL >  explicit Cursor > C code the standard AoS representation. 0 5 X ' low th . tate the ADT with it
- : : . ®
)| Operations | g y e The user can annotate each data type in the high level haskell as either fully factored or ur complier can aflow .e USEr 10 annho a.e € WIth 1ts
- inear layout (AoS or SoA) allowing the user to mix AoS and SoA data
e For nested data types, for instance, a Tree containing a List, if the Tree is annotated as types in the same program.
= s being fully factored, the user can choose the List to be either fully factored or linear. ® For a certain class of programs (reduction-like) preliminary
e The user can choose to mix SoA and AoS layouts in the code. experiments show that SoA layouts can offer faster runtime than
e The memory representation for a datatype is global at the moment. their AoS counterparts.
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